Description: Research on the Radiation Effects and Compact Model of SiGe HBT by Yabin Sun This book primarily focuses on the radiation effects and compact model of silicon-germanium (SiGe) heterojunction bipolar transistors (HBTs). FORMAT Paperback LANGUAGE English CONDITION Brand New Publisher Description This book primarily focuses on the radiation effects and compact model of silicon-germanium (SiGe) heterojunction bipolar transistors (HBTs). It introduces the small-signal equivalent circuit of SiGe HBTs including the distributed effects, and proposes a novel direct analytical extraction technique based on non-linear rational function fitting. It also presents the total dose effects irradiated by gamma rays and heavy ions, as well as the single-event transient induced by pulse laser microbeams. It offers readers essential information on the irradiation effects technique and the SiGe HBTs model using that technique. Back Cover This book primarily focuses on the radiation effects and compact model of silicon-germanium (SiGe) heterojunction bipolar transistors (HBTs). It introduces the small-signal equivalent circuit of SiGe HBTs including the distributed effects, and proposes a novel direct analytical extraction technique based on non-linear rational function fitting. It also presents the total dose effects irradiated by gamma rays and heavy ions, as well as the single-event transient induced by pulse laser microbeams. It offers readers essential information on the irradiation effects technique and the SiGe HBTs model using that technique. Author Biography Dr. Yabin Sun received his bachelors degree in Electronic Science and Technology from Jilin University, China in 2010, and his Ph.D in Microelectronics from Tsinghua University, China in 2015. His research focuses on the reliability, device model and parameters extraction of silicon-germanium (SiGe) heterojunction bipolar transistors (HBT). He was awarded the 20th Academic Rookie and Outstanding Ph.D dissertation at Tsinghua University in 2015. He received two consecutive national scholarships for graduate students (2013 and 2014) and was among the Outstanding Graduates of Beijing in 2015. In 2016, he joined the School of Information Science and Technology, East China Normal University, Shanghai, China.As first author, Dr. Sun has published 15 articles (12 in peer-reviewed journals and 3 international conference papers) in the past three years, as following:1. Yabin Sun, Jun Fu, Jun Xu et.al, An improved small-signal model for SiGe HBT under OFF-state, derived from distributed network and model parameter extraction, IEEE Transaction on Microwave theory and Techniques, vol.63, No.10, 2015.2. Yabin Sun, Jun Fu, Ji Yang, Jun Xu, Yudong Wang et.al, Novel analytical parameters extraction for SiGe HBTs based on the rational function fitting, Superlattices and Microstructure, vol.80, pp.11-19, 2015.3. Yabin Sun, Jun Fu, Jun Xu, Yudong Wang et.al, Impact of bias conditions on performance degradation in SiGe HBTs irradiated by 10MeV Br ion, Microelectronics Reliability, vol.54, pp.2728-2734, 2014.4. Yabin Sun, Jun Fu, Jun Xu, Yudong Wang et.al, Bias Dependence of ionizing Radiation Damage in SiGe HBTs at Different Dose Rates, Physica B nol.434, pp.95–100, 2014.5. Yabin Sun, Jun Fu, Jun Xu, Yudong Wang, Wei Zhou et.al, Degradation differences in the forward and reverse current gain of 25MeV Si ion irradiated SiGe HBT, Physica B, vol.449, pp.186–192, 2014.6. Yabin Sun, Jun Fu, Jun Xu, Yudong Wang et.al, Investigation of bias dependence on enhanced low dose rate sensitivity in SiGe HBTs for space application, Nucl. Instrum. Methods A, vol.738, pp.82–86, 2014.7. Yabin Sun, Jun Fu, Jun Xu et.al, Irradiation Effects of 25MeV Silicon Ions on SiGe Heterojunction Bipolar Transistors. Nucl. Instrum. Methods B, vol.312, pp.77–83, 2013.8. Yabin Sun, Jun Fu, Jun Xu, Yudong Wang, Wei Zhou et.al, A Single-event transient induced by pulsed laser in silicon–germanium heterojunction bipolar transistor, Chin. Phys. B, vol. 22, no.5, pp. 056103, 2013.9. Yabin Sun, Jun Fu et.al, Comparison of total dose effects on SiGe HBT induced by different swift heavy ions irradiation for space application, Chin. Phys. B, 23(11), 116104, 2014.10. Yabin Sun, Jun Fu, Jun Xu, Yudong Wang, Wei Zhou et.al, Extraction of temperature dependences of small-signal model parameters in SiGe HBT HICUM model, Chin. Phys. B, 25(4), 048501, 201611. Yabin Sun, Jun Fu, Jun Xu, Yudong Wang et.al. The total-dose-effects of gamma and proton irradiations on high-voltage SiGe HBTs, Radiation Effects & Defects in Solids, vol.168, no.4, pp.253-263, 2013.12. Yabin Sun, Jun Fu, Jun Xu, Yudong Wang, et.al, Study on ionization damage of silicon-germanium heterojunction bipolar transistors at various dose rates, Acta Phys. Sin. vol.62, no.19, 2013. 13. Yabin Sun, Jun Fu, Jun Xu et.al. The Reliability of SiGe HBT under Swift Heavy Ion Irradiation, 2013 IEEE International Conference on Electron Devices and Solid-State Circuits, HongKong14. Yabin Sun, Jun Fu, Jun Xu et.al, Novel method to determine base resistance in SiGe HBT HICUM based on rational function fitting, 2014 IEEE International Conference on Solid -States and Integrated Circuit Technology, Guilin, China15. Yabin Sun, Jun Fu, Jun Xu et.al, A Comparison of 10MeV Chlorine and 20MeV Bromine Ion Irradiation Effects on SiGe HBTs for Space Application. 2013 IEEE International Semiconductor Device Research Symposium16. Ji Yang, Jun Fu, Yabin Sun, Yudong Wang, et.al., Novel extraction of emitter resistance of SiGe HBTs from forward-Gummel measurements, 2014 IEEE International Conference on Electron Devices and Solid-State Circuits, Chengdu, China, June Table of Contents Introduction.- Ionization damage in SiGe HBT.- Displacement damage with swift heavy ions in SiGe HBT.- Single-event transient induced by pulse laser microbeam in SiGe HBT.- Small-signal equivalent circuit of SiGe HBT based on the distributed effects.- Parameter extraction of SiGe HBT models.- Conclusion. Feature Nominated as an outstanding PhD dissertation by Tsinghua University, China Proposes a new technique for detecting displacement damage in silicon-germanium (SiGe) heterojunction bipolar transistors (HBTs) with swift heavy ions instead of neutrons Presents an improved, high-frequency, small-signal model for SiGe HBTs taking into account the distribution characteristics Description for Sales People Nominated as an outstanding PhD dissertation by Tsinghua University, China Proposes a new technique for detecting displacement damage in silicon-germanium (SiGe) heterojunction bipolar transistors (HBTs) with swift heavy ions instead of neutrons Presents an improved, high-frequency, small-signal model for SiGe HBTs taking into account the distribution characteristics Details ISBN9811351813 Author Yabin Sun Series Springer Theses Language English ISBN-10 9811351813 ISBN-13 9789811351815 Format Paperback Pages 168 Publisher Springer Verlag, Singapore Imprint Springer Verlag, Singapore Place of Publication Singapore Country of Publication Singapore DEWEY 621.381528 Year 2019 Publication Date 2019-01-04 UK Release Date 2019-01-04 Illustrations 171 Illustrations, black and white; XXIV, 168 p. 171 illus. Edition Description Softcover reprint of the original 1st ed. 2018 Alternative 9789811046117 Audience Professional & Vocational We've got this At The Nile, if you're looking for it, we've got it. With fast shipping, low prices, friendly service and well over a million items - you're bound to find what you want, at a price you'll love! TheNile_Item_ID:126552708;
Price: 217.11 AUD
Location: Melbourne
End Time: 2024-12-05T08:37:48.000Z
Shipping Cost: 9.81 AUD
Product Images
Item Specifics
Restocking fee: No
Return shipping will be paid by: Buyer
Returns Accepted: Returns Accepted
Item must be returned within: 30 Days
ISBN-13: 9789811351815
Book Title: Research on the Radiation Effects and Compact Model of SiGe HBT
Number of Pages: 168 Pages
Language: English
Publication Name: Research on the Radiation Effects and Compact Model of Sige Hbt
Publisher: Springer Verlag, Singapore
Publication Year: 2019
Subject: Engineering & Technology, Chemistry, Physics
Item Height: 235 mm
Item Weight: 302 g
Type: Textbook
Author: Yabin Sun
Subject Area: Material Science
Item Width: 155 mm
Format: Paperback