Description: Several Complex Variables II by L.A. Aizenberg, P.M. Gauthier, G.M. Khenkin, A.G. Vitushkin, J.R. King, A.B. Aleksandrov, A. Sadullaev, A.G. Sergeev, A.K. Tsikh, V.S. Vladimirov Plurisubharmonic functions playa major role in the theory of functions of several complex variables. The theory of subharmonic functions was developed and generalized in various directions: subharmonic functions in Euclidean space IRn, plurisubharmonic functionsin complex space en and others. FORMAT Paperback LANGUAGE English CONDITION Brand New Publisher Description Plurisubharmonic functions playa major role in the theory of functions of several complex variables. The extensiveness of plurisubharmonic functions, the simplicity of their definition together with the richness of their properties and. most importantly, their close connection with holomorphic functions have assured plurisubharmonic functions a lasting place in multidimensional complex analysis. (Pluri)subharmonic functions first made their appearance in the works of Hartogs at the beginning of the century. They figure in an essential way, for example, in the proof of the famous theorem of Hartogs (1906) on joint holomorphicity. Defined at first on the complex plane IC, the class of subharmonic functions became thereafter one of the most fundamental tools in the investigation of analytic functions of one or several variables. The theory of subharmonic functions was developed and generalized in various directions: subharmonic functions in Euclidean space IRn, plurisubharmonic functionsin complex space en and others. Subharmonic functions and the foundations ofthe associated classical potenĀ tial theory are sufficiently well exposed in the literature, and so we introduce here only a few fundamental results which we require. More detailed expositions can be found in the monographs of Privalov (1937), Brelot (1961), and Landkof (1966). See also Brelot (1972), where a history of the development of the theory of subharmonic functions is given. Table of Contents I. Multidimensional Residues and Applications.- II. Plurisubharmonic Functions.- III. Function Theory in the Ball.- IV. Complex Analysis in the Future Tube.- Author Index. Promotional Springer Book Archives Long Description Plurisubharmonic functions playa major role in the theory of functions of several complex variables. The extensiveness of plurisubharmonic functions, the simplicity of their definition together with the richness of their properties and. most importantly, their close connection with holomorphic functions have assured plurisubharmonic functions a lasting place in multidimensional complex analysis. (Pluri)subharmonic functions first made their appearance in the works of Hartogs at the beginning of the century. They figure in an essential way, for example, in the proof of the famous theorem of Hartogs (1906) on joint holomorphicity. Defined at first on the complex plane IC, the class of subharmonic functions became thereafter one of the most fundamental tools in the investigation of analytic functions of one or several variables. The theory of subharmonic functions was developed and generalized in various directions: subharmonic functions in Euclidean space IRn, plurisubharmonic functions in complex space en and others. Subharmonic functions and the foundations ofthe associated classical poten Description for Sales People This volume of the Encyclopaedia is the second in its subseries on the theory of several complex variables. It contains four parts which deal with topics related to algebraic geometry, potential theory, function theory in the unit ball and twistor geometry. Researchers and graduate students in complex analysis and in mathematical physics will use this book as a reference and as a guide to exciting areas of research. Details ISBN3642633919 Short Title SEVERAL COMPLEX VARIABLES II S Series Encyclopaedia of Mathematical Sciences Language English ISBN-10 3642633919 ISBN-13 9783642633911 Media Book Format Paperback DEWEY 515.94 Series Number 8 Year 2012 Translator J.R. King Publication Date 2012-10-14 Imprint Springer-Verlag Berlin and Heidelberg GmbH & Co. K Place of Publication Berlin Country of Publication Germany Edited by G.M. Khenkin Affiliation Steklov Mathematical Institute, Moscow, CIS Subtitle Function Theory in Classical Domains Complex Potential Theory Pages 262 Illustrations VII, 262 p. DOI 10.1007/978-3-642-57882-3 Author V.S. Vladimirov Publisher Springer-Verlag Berlin and Heidelberg GmbH & Co. KG Edition Description Softcover reprint of the original 1st ed. 1994 Alternative 9783540181750 Audience Professional & Vocational We've got this At The Nile, if you're looking for it, we've got it. With fast shipping, low prices, friendly service and well over a million items - you're bound to find what you want, at a price you'll love! TheNile_Item_ID:96396322;
Price: 115.04 AUD
Location: Melbourne
End Time: 2025-01-07T08:57:45.000Z
Shipping Cost: 9.68 AUD
Product Images
Item Specifics
Restocking fee: No
Return shipping will be paid by: Buyer
Returns Accepted: Returns Accepted
Item must be returned within: 30 Days
ISBN-13: 9783642633911
Book Title: Several Complex Variables II
Number of Pages: 262 Pages
Language: English
Publication Name: Several Complex Variables II: Function Theory in Classical Domains Complex Potential Theory
Publisher: Springer-Verlag Berlin and Heidelberg Gmbh & Co. Kg, A.K. Tsikh, L.A. Aizenberg, A.B. Aleksandrov, V.S. Vladimirov, A.G. Sergeev, A. Sadullaev
Publication Year: 2012
Subject: Mathematics, Physics
Item Height: 235 mm
Item Weight: 421 g
Type: Textbook
Author: A.G. Vitushkin, G.M. Khenkin
Item Width: 155 mm
Format: Paperback